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Alerting Systems 

Alerting System:  Automation that monitors another 
system and issues alert guidance to human operators 
when necessary to avoid some category of incident.



Importance of World Dynamics to an Alerting Decision
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A good world dynamic model is critical in choosing the alert action
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Generalized Alerting System as Intelligent Agent*

(*Diagram adapted from Kaelbling, et. al.)
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Two phases of alerting:  world state update and alert action selection



World Model Class Parameter:  Car Encounters

Class p1 :  Failure of lane-keeping by A or B

Class p2 :  Normal lane-keeping by A and B  

z = ffail(d, d)

z = fnorm(d, d)

ffail(d, d), if p = p1

z = f(d, d, p) = 

fnorm(d, d), if p = p2
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Class Parameter Distribution Updating
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Bayes Updating of Class Parameter Distribution

Assuming Markov system Require knowledge of previous state only
Update recursively

f(zk | zk-1, uk-1, pi) fk-1(pi) 
fk(pi) =                                            Probability of pi at time step k

Σ f(zk | zk-1, uk-1 ,pj) fk-1(pj) 

• Recursive solution also exists if the observation is an uncertain y,
from fobs(y | z), rather than z directly

j = 1

n

Class-conditional transition likelihood Current ith class probability



Testbed System with Distinct Dynamic Classes

• Defined simple testbed system and alerting logic to
– Implement and demonstrate Bayesian updating of class 

parameter distribution
– Link choice of alert actions to class parameter distribution

• Testbed:  Planar 2 “vehicle” encounter scenario 

• Class parameter:  3 future trajectory classes
– Normal, fo(pnormal) = .9
– Vehicle A failed, fo(pAfail) = .05
– Vehicle B failed, fo(pBfail) = .05

• f(zk | zk-1, uk-1, pi) is from a defined Markov process

fo(p)



Testbed System with Classes

Normal Class:  Vehicles approach from sides, and mean paths ramp apart so they 
tend to pass safely.  Vehicles are responsive to maneuver commands.

(Collision if R < Rcollision)
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Testbed System with Classes

A Failure Class:   Vehicle A disregards passing procedure and
maneuver commands (if issued)
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Testbed System with Classes

B Failure Class:   Vehicle B disregards passing procedure and
maneuver commands (if issued)
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Simulated System Trajectory (Class pnormal)
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Simulated System Trajectory (Class pnormal)
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Bayes-Updated Class Distribution Trace
(Class pnormal)
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Discrete Action Sequence, U

• U is a sequence of future alert actions.

U = { u(1), u(2), u(3), … }

u(•)    { u1, u2,… un }
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(e.g.  A climb, B descend, do nothing…)



Limiting Scope of Action Sequence, U

• Difficult to consider all sequence options
– For testbed system, considered a finite set of control sequences:  

Those of constant “u”.

• Reduced U set:
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Testbed System Action Sequence
(Evasion Maneuver) Set

Evasion maneuver:  Apply a constant vertical velocity bias in place of 
nominal behavior. 

Policy derived under assumption that future u(t) = constant
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Evasion velocity bias •

•
Alert starts

No alert
U = u(t) =    Bias on A

Bias on B 



Calculating Expected Utilities for Testbed Policy

• For testbed system, defined
– Utility of any collision = 0
– Utilities of having no collision with each alert option, Ui:
vnoalert, vAbias, vBbias and said vnoalert > vAbias and vAbias = vBbias

• Expected utilities for each U:

E(Utility of U1)  = vnoalert [P(no collision | U1)]  = vnoalert [1 – P(collision | U1, x)]

E(Utility of U2)  =  vAbias [P(no collision | U2)]  =  vAbias [1 – P(collision | U2, x)]

E(Utility of U3)  =  vBbias [P(no collision | U3)]  =  vBbias [1 – P(collision | U3, x)]

• Logic:  Choose Ui to maximize expected value



Collision Probabilities from Parameter Distribution

Compute probability of a collision (C) for each U

P(collision | U1, xest)       P(C | U1, pnormal, z)    P(C | U1, pAfail, z)    P(C | U1, pBfail, z)   f(pnormal) 

P(collision | U2, xest)   =  P(C | U2, pnormal, z)    P(C | U2, pAfail, z)    P(C | U2, pBfail, z)     f(pAfail) 

P(collision | U3, xest)       P(C | U3, pnormal, z)    P(C | U3, pAfail, z)    P(C | U3, pBfail, z)     f(pBfail) 

Class-conditional collision probabilities

Class distribution



Simulated System Trajectory (Class pBfail)
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Collision Probability Trace for Each U
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Expected Utilities for Each U
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E(Utility of Ui)  = vUi [1 – P(collision | Ui)]



Summary to Date

• Utility and probability-based framework allowing for 
dynamic classes and class distribution updating

• Testbed system with similarities to some difficult alerting 
problems
– Multiple vehicles/humans requiring coordination
– Identifiable classes of trajectories
– Dynamic resolution guidance desired

• Initial alerting logic for testbed system



Future Work

• Apply distribution update techniques to more complex 
and realistic alerting problems
E.g.
– Car collision avoidance (intersections, lane incursions, run-off-road)
– Aircraft collision avoidance (En route, parallel approaches, runway 

incursions)

• Consider more sophisticated alerting policies
– More complete sets of alert sequences, U
– Policies that consider the value of anticipated information

• Dynamic Decision Networks

• Compare model with existing alerting systems and 
concepts, identify differences and benefits, refine 
model



The End



Automatic Alerting Systems 

• Existing alerting systems (in aviation) target
– Mid-air collisions
– Controlled flight into terrain
– Collisions due to parallel approach blunders
– Wind shear accidents
– Many other hazards

• Trend toward more alerting systems and more complex 
algorithms
– Alert to avoid future hazard
– Availability of computing power and state information
– Desire to increase or maintain safety levels



Design of Alerting Logics
• Most logics evolve from simple forms

– Start with a simple baseline alert-triggering logic
– Change incrementally so system behaves as desired in test scenarios
– Field the system and adjust later to minimize user complaints

e.g.  TCAS:     10 years from concept to fielding
10 years of adjustment in field (to version 7.0)

• Would rather logic follow directly from explicit assumptions and
requirements

– Reduce design costs, bring logic closer to “optimal”?
– Yang thesis

Performance
requirements

Dynamic
assumptions

Human
designer

Alerting
logic

Performance
requirements

Dynamic
assumptions

Human
designer

Alerting
logic

(Direct
Mapping)



Objectives 

• Develop a novel design methodology applicable over a range of 
difficult alerting problems
– Multiple humans/alerting subsystems to be coordinated
– Dynamic resolution guidance desired
– Identifiable distinct dynamic classes in the observed system

(e.g. normal and failure)
• Incorporate knowledge of structure in the nominal system

– Procedures, rules of the road…

• Show agreement with and any advantages over evolved solutions 
to given problems (which presumably exhibit approximate 
“correct” alerting behavior)
– TCAS
– Proposed parallel approach alerting logics

• Independent approaches
• Dependent approaches

– Others…



World State (x) Meaning

World State:  Information about the world sufficient to know 
the future state or state distribution.  (Markov state)

•
x = { position, velocity }

Short term prediction

•
x = { position, velocity, road parameters, driver status… }

Some state variables may not be directly observable (e.g. driver status)

Need more information to extend prediction horizon



World State Estimate (xest) is a Probability Density 
Function over x

Illustration:  Spring-mass system with uncertain parameter

• x = { z, z, p }  xest = { z, z, p }  ?        No, xest = { f(z, z, p) } 

• Assume we know the prior distributions at t = 0:

• Est. for for t>0: xest(t) = { ft(z, z, p) }        where ft(z, z, p) is the posterior distribution
of at time t

= { τ, f0(z, z, p) }    where τ is trajectory  { z(t), u(t) } for all t<0 

p

f0(z, z, p)

z   …

z

u(t)

z = -pz + u
control input



Alerting Policy Design

• At each time step, choose the best action for the current 
world state estimate

• Options

u
Planning 
based on 

world state
estimate

xest

Class 
hypothesis 

testing

Planning for
chosen

hypothesis

xest x u

Chosen method:



Policy for Testbed System:  Simple Utility-based 
Approach

• Employ Maximum Expected Utility principle on a set of 
possible action sequences, { U1, U2, U2… }
– Update world state estimate
– Determine expected utility of different U’s from current state
– Choose the action with the highest expected utility

max[ Σ P(outcome j | Ui) Utility(outcome j) ]

• Resembles resolution strategy of some logics (TCAS)

• Doesn’t account for value of anticipated observations

i j

E[ Utility of Ui ]



General State Distribution Updating for Markovian 
System

For world state x, observation y, control input u

f(xk) =  Σ P(xk | xk-1, uk-1) f(xk-1) 

f(xk) = α P(yk | xk) f(xk-1) 

• f(xk) is the updated state distribution

• α is a normalization constant

(From Russell & Norvig, AI, A Modern Approach)

X



Typical “Baseline Logics”

• Alert to avert a hazard (AILS, TCAS?)

• Alert when system fails to conform (PRM)

• Alert before evasion options are lost (Carpenter, Tomlin)

system state

non-alert trajectory

hazard

escape trajectory

criteria for completed escape

hazard

Conformance boundary

hazard

“NTZ”



Discretely Distributed World State Parameter:
Aircraft Encounter Classes

Class p1 :  A and B lose vertical separation

A

B

A

B

Class p2 :  A and B maintain vertical separation

z = ffail(h, h)

z = fnorm(h, h)

ffail(h, h), if p = p1

z = f(h, h, p) = 

fnorm(h, h), if p = p2

p
p1 p2

f(p)

x = { f(h, h, p) } 



State Parameter Distribution Updating
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